Should Antibiotic-Impregnated Cement Be Used During Primary Total Ankle Arthroplasty (TAA)?

DOI: 10.1177/1071100719859328

Jens Richter, PD Dr1

1Marienhospital Gelsenkirchen GmbH, Gelsenkirchen, Germany

Corresponding Author:
Jens Richter, PD Dr, Marienhospital Gelsenkirchen GmbH, Virchowsstraße 122, Gelsenkirchen, 45886, Germany.
Email: jens.richter@rub.de

Abstract

Recommendation: Unknown. There is insufficient evidence for the routine use of antibiotic-impregnated cement during primary total ankle arthroplasty (TAA).

Level of Evidence: Consensus.

Delegate Vote: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

Rationale

The main sources for this systematic review were the Medline, Embase, CINAHL, and Cochrane CENTRAL databases, beginning with the first citation of ankle arthroplasty in July 2003, the 2016 Swedish Ankle Registry,4 and the 2016 New Zealand Joint Report.2

In their report on the New Zealand Joint Registry, Rothwell et al2 reported on 1261 total ankle replacements (TARs) from January 2000 to December 2015. Cement fixation was used only in 13 tibial components and in 7 talar components. Antibiotic-impregnated cement was used 7 times for tibial component fixation and 3 times for the talus component fixation. However, there was no statistical evaluation in this registry for the item periprosthetic joint infection (PJI) according to the type of cement used.

Considerable research is available related to PJI and antibiotic-impregnated cement for total knee arthroplasty (TKA) procedures. Gutowski et al1 stated in their study that the absolute rate of infection increased when antibiotic-loaded cement was used in TKA, although this was less when compared to infection rates after use of plain cement. In 2016, Schiavone et al3 performed a systematic review determining the effectiveness of using antimicrobials and the safety of antibiotic-loaded bone cement in primary TKA. The authors concluded that there was no significant difference in the rate of deep or superficial surgical site infection in patients receiving antibiotic-impregnated cement in primary TKA compared with those receiving plain cement.

Based on the lack of proven efficacy for antibiotic-impregnated cement in the prevention of PJI in the TKA literature and the lack of research into antibiotic-impregnated cement in TAA, we cannot provide a recommendation for or against the routine use of antibiotic-impregnated cement during TAA. However, this point may be of limited current importance anyway, as the majority of modern-generation TAA are cementless in design.

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ICMJE forms for all authors are available online.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

References

What Are the Benefits and Risks Associated With the Use of Vancomycin Powder in the Wound During Total Ankle Arthroplasty (TAA) or Other Foot and Ankle Procedures?

DOI:10.1177/1071100719859010

Gaston Slullitel, MD1, Yasuhito Tanaka, MD, PhD2, Ryan Rogero, BS3,4, Valeria Lopez, MD1, Eiichiro Iwata, MD, PhD2, and Yusuke Yamamoto, MD2

1Department of Foot and Ankle Surgery, Institute of Orthopaedics, Rosario, Argentina
2Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
3Rothman Orthopaedic Institute, Philadelphia, PA, USA
4Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA

Corresponding Author:
Yasuhito Tanaka, MD, PhD, Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan.
Email: yatanaka@naramed-u.ac.jp

Abstract

Recommendation: Though one study supporting topically applied vancomycin has shown it to reduce the
rate of deep infection in diabetic patients undergoing foot and ankle surgery, there is insufficient evidence to show benefits or to show any risks associated with the use of vancomycin powder during total ankle arthroplasty (TAA) or other foot and ankle procedures in a general population. **Level of Evidence:** Consensus.

Delegate Vote: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

Rationale

The effects of the use of vancomycin powder in foot and ankle surgery are ill-defined. Wukich et al. evaluated the use of vancomycin powder exclusively in foot and ankle procedures, though this was performed in a population composed solely of patients with diabetes mellitus. The authors concluded that odds of surgical site infections (SSIs) (73% decrease) and deep infections (80% decrease) were significantly reduced in diabetic patients who underwent reconstructive surgery of a foot and/or ankle deformity or trauma and received topically applied vancomycin when compared with a group of patients who did not receive topically applied vancomycin. The rate of superficial infections did not differ significantly between the 2 groups. Based on this retrospective controlled study, the authors concluded that foot and ankle surgeons may consider topically applying 500 to 1000 mg of vancomycin powder before skin closure in patients who are not allergic to vancomycin. To our knowledge, no other studies have evaluated the use of vancomycin powder exclusively in foot and ankle surgery.

The effectiveness of vancomycin powder has been documented more extensively in other orthopedic subspecialties than foot and ankle. A systematic literature review by Kanj et al. showed local vancomycin-impregnated cement and powder to be associated with lower infection rates while also being safe and effective in clean orthopedic surgery. The authors especially recommended using local vancomycin in spine surgery, in which patients without local antibiotic prophylaxis were more than 4 times more likely to experience a deep postoperative wound infection. Evaniew et al. concluded through their meta-analysis that there is a lack of high-quality evidence to inform the use of intrawound vancomycin in spine surgery. Xie et al. found from their meta-analysis on intrawound vancomycin in spinal surgery that the odds of developing post-surgical wound infection without prophylactic local vancomycin use were 2.83-fold higher than the odds of experiencing wound infection with the use of intrawound vancomycin. Furthermore, a retrospective review performed by Singh et al. that assessed the efficacy of intraoperative vancomycin powder administration on preventing deep SSI in high-energy lower extremity trauma (including tibial plateau fractures and pilon fractures) found that the rate of deep SSI between the groups was not significantly different.

Concerns have been raised about the potential risks of the local use of vancomycin, including selection for gram-negative and multidrug-resistant bacteria, increased local tissue irritation, hypersensitivity or anaphylaxis, impaired renal function, and increased seroma formation. However, these adverse effects are mostly hypothetical and have not been reported in the literature, though a case of circulatory collapse due to topical vancomycin application during spine surgery was identified.

Although vancomycin powder appears to be effective at decreasing postoperative infections in spine surgery according to some studies, a large void remains in the evidence for other orthopedic subspecialties, especially foot and ankle. Randomized controlled trials, particularly within the fields of arthroplasty and trauma, are needed to determine the efficacy of local vancomycin powder for infection reduction. In this scenario, a phase III prospective randomized clinical trial is being conducted among high-risk tibial fracture patients to assess the efficacy of locally administered vancomycin powder in the prevention of SSI after fracture surgery, which may bring increased clarity to this matter.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. ICMJE forms for all authors are available online.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

Is There a Role for the Use of Dilute Povidone-Iodine (Betadine) Irrigation or Other Antiseptic Irrigation Solutions During Total Ankle Arthroplasty (TAA) or Other Foot and Ankle Procedures?

DOI: 10.1177/1071100719859329

Kristin Englund, MD, MLS¹, and Nima Heidari, MBBS, MSc, FRCS²

¹Cleveland Clinic, Cleveland, OH, USA
²Department of Orthopaedics, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom

Corresponding Author:
Nima Heidari, MBBS, MSc, FRCS, The Royal London Limb Reconstruction Service, Royal London Hospital, Whitechapel Rd, Whitechapel, London E1 1BB, United Kingdom.
Email: n.heidari@gmail.com

Abstract

Recommendation: With regard to total ankle arthroplasty (TAA), there is a lack of evidence to recommend for or against the use of betadine solution. Level of Evidence: Consensus.

Delegate Vote: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

Rationale

In 2016, the World Health Organization (WHO) published guidelines for the prevention of surgical site infections (SSIs).³ Based on a review of 17 randomized controlled trials, there is moderate-quality evidence that alcohol-based antiseptic solutions for preparation of the surgical site decrease the risk of SSIs in comparison to aqueous solutions. A low quality of evidence showed decreased SSI risk with alcohol-based chlorhexidine gluconate compared to alcohol-based betadine. Although alcohol may be concerning for persons from certain religions, the WHO guideline highlights the statement issued in 2002 by the Muslim Scholars Board of the Muslim World League. According to the Board, medicines containing alcohol may be used as an external cleaner. With the use of alcohol-based agents, care must be taken to allow them to dry completely, as operating rooms fires have been reported. According to the Centers for Disease Control and Prevention (CDC), skin preparation with an alcohol-based antiseptic solution should be completed before surgery, to reduce the risk of SSI.²

A systematic review and meta-analysis of combination chlorhexidine gluconate (CHG) and betadine implicated the utility of these agents, despite the low quality of the evidence. A major limitation of many of these studies, however, was the use of bacterial colonization as an endpoint rather than the development of a true SSI.¹

Privitera et al recently provided a meta-analysis updating and clarifying issues from prior meta-analyses which had not clearly distinguished among studies using alcohol and aqueous-based products. In the updated meta-analysis, there was subgroup analysis showing decreased colonization rates with chlorhexidine, but there was not a statistically significant difference in SSI due to the low numbers of SSI.⁶

Although the use of antiseptic agents for skin preparation is necessary for bioburden reduction and prevention of infection, there is minimal data available regarding the role of antiseptic irrigation solutions during total ankle arthroplasty (TAA). The use of antiseptic agents for irrigation is often performed in the setting of periprosthetic joint infections (PJIs) of the hip and the knee, although the utility in total ankle replacements is unknown.

Randomized controlled studies have evaluated the use of various irrigates in open fracture wounds, noting that normal saline was more efficacious and as effective at decreasing infection in comparison to castile soap and bacitracin solution, respectively.¹⁴ Chlorhexidine solutions have been evaluated in an in vitro model as being beneficial to decreasing the biofilm load, particularly at concentrations above 2%. However, of importance is that concentrations as low as 0.02% CHG have shown to lead to fibroblast toxicity.⁷⁻⁸ Dilute betadine may be advantageous in this regard, as it has minimal cellular toxicity at low concentrations and excellent efficacy for prevention of infection.⁹

Based on the available data, the CDC has recommended that strong consideration should be given to the use of dilute betadine during all surgical procedures. Although no data in TAA exists, extrapolating the recommendations of the CDC to TAA appears to be reasonable as dilute betadine is inexpensive, efficacious, and carries little to no cell toxicity.